a2 United States Patent
Lupu et al.

US009091727B1

US 9,091,727 B1
*Jul. 28, 2015

(10) Patent No.:
(45) Date of Patent:

(54) CONFIGURATION AND TESTING OF

(71)
(72)

(73)

")

@
(22)

(1)

(52)

(58)

(56)

MULTIPLE-DIE INTEGRATED CIRCUITS

Applicant: Xilinx, Inc., San Jose, CA (US)

Inventors: Julian Lupu, Portland, OR (US);
Shivani C. Desai, San Jose, CA (US);
Lee N. Chung, San Jose, CA (US);
Teymour M. Mansour, Sunnyvale, CA
(US)

Assignee: XILINX, INC., San Jose, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 282 days.
This patent is subject to a terminal dis-
claimer.

Appl. No.: 13/652,874

Filed: Oct. 16, 2012

Int. CL.

GOIR 31728 (2006.01)

HOIL 25/00 (2006.01)

GOIR 3173185 (2006.01)

U.S. CL

CPC GOIR 31/318513 (2013.01); HOIL 2924/00

Field of Classification Search

None

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

5,081,678 A
5,640,106 A

1/1992 Kaufman et al.

* 6/1997 Ericksonetal. 326/38

Configuration Conf|
data sequence —>

6,212,639 Bl 4/2001 FErickson et al.
6,563,340 Bl 5/2003 Jones
6,614,259 B2 9/2003 Couts-Martin et al.
6,654,889 B1 11/2003 Trimberger
6,730,540 B2 5/2004 Siniaguine
6,957,340 Bl 10/2005 Pangetal.
7,095,253 Bl 8/2006 Young
7,397,272 B1* 7/2008 Wennekamp 326/38
7,574,637 B2* 8/2009 Ricchettietal. 714/724
7,671,624 Bl 3/2010 Walstrum, Jr.
7,702,893 Bl 4/2010 Rally et al.
7,710,146 B1* 52010 Egneretal.ccoccrne. 326/38
7,827,336 B2 11/2010 Miller et al.
7,971,072 Bl 6/2011 Donlin et al.
8,058,897 B1* 11/2011 Luetal.ccooevevvnrenrnnen.. 326/38
8,296,578 Bl 10/2012 New
8,327,201 B1* 12/2012 Lai cocovevreriieiieienn 714/725
8,384,427 B1* 2/2013 Tangetal. . 326/39
8,536,895 B2* 9/2013 Luetal.ccooevvvivrrenrnnnnn. 326/38
(Continued)
OTHER PUBLICATIONS

Oh, Boon Howe, et al., “The Evolution of CPU Packaging Technol-
ogy and Future Challenges”, Proceedings of the 2006 International
Conference on Electronic Materials and Packaging, EMAP 2006,
Dec. 11-14, 2006, pp. 1-6, IEEE.

(Continued)

Primary Examiner — Justin R Knapp
(74) Attorney, Agent, or Firm — LeRoy D. Maunu

(57) ABSTRACT

In one embodiment, a configuration data sequence is input to
a master programmable integrated circuit (IC). In response to
control bits in the configuration data sequence, the master
programmable IC transmits the configuration data sequence
to one or more slave programmable ICs. The master program-
mable IC and the one or more slave programmable ICs are
configured in parallel with configuration bits from the con-
figuration data sequence.

19 Claims, 5 Drawing Sheets

Forwarded Conf

configuration
data sequence|

Conf|

»

202 I5E]
Master
308
304 306 Boundary
Logic MISR scan chain
00
B C
in
Slave 1 oI
318
ﬂ 16 Boundary
Logic MISR scan chain
D0
B C
322
Slave 2 DI
32
336 324 Boundary
Control Logic scan chain

D0

US 9,091,727 B1
Page 2

(56)

2003/0160633
2004/0080341
2004/0178819
2006/0047953
2006/0076690
2006/0216866
2007/0088993
2007/0195951
2009/0160482
2009/0161401
2010/0153747
2010/0157854
2011/0073996
2012/0213185
2012/0324305
2013/0009694

References Cited

U.S. PATENT DOCUMENTS

Al 8/2003
Al 4/2004
Al 9/2004
Al 3/2006
Al 4/2006
Al 9/2006
Al* 4/2007
Al 8/2007
Al 6/2009
Al 6/2009
Al 6/2010
Al 6/2010
Al 3/2011
Al 8/2012
Al* 12/2012
Al 1/2013

Terrill et al.
Sasaki et al.
New

Beukema et al.
Khandros et al.
Lam et al.

Bakercocooenn.

Leung, Jr.
Karp et al.
Bilger et al.

Asnaashari et al.

Anderson et al.
Leung et al.
Frid

Whetsel

Camarota

....... 714/718

....... 714/733

OTHER PUBLICATIONS

Xilinx, Inc., Alfke, Peter, Application Note, XAPP 052, Jul. 7, 1996,
Version 1.1, “Efficient Shift Registers, LFSR Counters, and Long
Pseudo Random Sequence Generators”, pp. 1-6, Xilinx, Inc. 2100
Logic Drive, San Jose, CA 95124 US.

Xilinx, Inc., “Virtex-6 FPGA Configuration User Guide”, UG360
(v2.0), Nov. 15, 2009, pp. 145-156, Chapter 10, www.xilinx.com,
Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124 US.

U.S. Appl. No. 13/251,171, filed Sep. 30, 2011, Weiguang Lu et al.,
Xilinx, Inc. 2100 Logic Drive, San Jose, CA 95124 US.

U.S. Appl. No. 12/825,286, filed Jun. 28, 2010, Weiguang Lu et al.,
Xilinx, Inc. 2100 Logic Drive, San Jose, CA 95124 US.

U.S. Appl. No. 12/820,591, filed Jun. 22, 2010, Weiguang Lu et al.,
Xilinx, Inc. 2100 Logic Drive, San Jose, CA 95124 US.

* cited by examiner

US 9,091,727 B1

Sheet 1 of 5

Jul. 28, 2015

U.S. Patent

147
(42

0Ll
9Ll

8L

) E

aIp M| 8|qeWwWeIboId
0L

aIp DI 9|qewwelbold
€01

(4%

aIp DI 8|qewwe.bold
201

0¢)

90}

U.S. Patent Jul. 28, 2015 Sheet 2 of 5 US 9,091,727 B1

202 Input configuration data sequence to
master IC die

h 4

204 Transmit configuration data sequence to
slave IC die

h 4

206 Configure master and slave IC dies in
parallel with the configuration data sequence

A 4
208 Initialize MISRs of master and slaves to
same set of initialization values

Y
210 Execute test vectors to generate outputs

h 4

212 Generate pseudo-random value(s) from
outputs using MISR

h 4

214 Compare pseudo random output to
expected output

FIG. 2

U.S. Patent Jul. 28, 2015 Sheet 3 of 5 US 9,091,727 B1

302 vy 10!
Master
| " 308
Configuration Conf und:
332 304 306 Boundary
data sequence —> | 226 | o 11SF
au Control Logic MISR scan chain
A
\ A 4 TDO
B C
312
Slave 1 L 0!
318
Forwarded Conf| 234 | | 314 316 Boundary
configuration Control Logic MISR scan chain
data sequence > |
A_
TDO
B C
322
Slave 2 TDI
" 2
Conf 336 | | 34 326 Boundary
Control Logic MISR scan chain
A
, 1D0
B C

FIG. 3

US 9,091,727 B1

Sheet 4 of 5

Jul. 28, 2015

U.S. Patent

¥ "Old

yoeqpeoo4

_ Z 9beig _ | abejg
_ _
_ _
_ “ul _
| h Pl
_ _
8Ly 24 20y 90¥
| A\ | AN
_ \ _ <
<« — — | d < d
_ _
| piy | y0p
0
| |
_ 2Ly _ 0%
_ N3 _
_ _
_ _
_ _
_ _

\ 4
NInQ

US 9,091,727 B1

Sheet 5 of 5

Jul. 28, 2015

U.S. Patent

O O O O
I L% I T 11

3

|| | I | I | I | I
I P L
/

0 b IO/ R a0n 990010/ $91N00 1055011
1|]
1 1

PR T T T T T T T T T e T
1 0S8 Sa0 M1 117

£0C Sy

0IS 00yd [702 s91) -

==
zsll(:,

€05 SWydg

A

906 J0 €05

//_1._
latats
O <)
Wl wl_| ol
[22] W (72}
araTe
o1+L2+40

008 /% NOILNGIMLSIA ¥20TD / DIANOD K

o~
~—
[tel

N
R
=5
)

US 9,091,727 B1

1
CONFIGURATION AND TESTING OF
MULTIPLE-DIE INTEGRATED CIRCUITS

FIELD OF THE INVENTION

An embodiment relates to testing an integrated circuit (IC)
that includes multiple dies.

BACKGROUND

Programmable integrated circuits (ICs) include a plurality
of resources that can be programmed to perform specified
logic functions. One type of programmable IC, the field pro-
grammable gate array (FPGA), typically includes an array of
programmable tiles. These programmable tiles comprise
various types of logic blocks, which can include, for example,
input/output blocks (IOBs), configurable logic blocks
(CLBs), dedicated random access memory blocks (BRAMs),
multipliers, digital signal processing blocks (DSPs), proces-
sors, clock managers, delay lock loops (DLLs), and bus or
network interfaces such as Peripheral Component Intercon-
nect Express (PCle) and Ethernet and so forth.

Each programmable tile may include both programmable
interconnect and programmable logic. The programmable
interconnect typically includes a large number of intercon-
nect lines of varying lengths interconnected by program-
mable interconnect points (PIPs). The programmable logic
implements the logic of a user design using programmable
elements that can include, for example, function generators,
registers, arithmetic logic, and so forth.

The programmable interconnect and programmable logic
are typically programmed by loading a stream of configura-
tion data into internal configuration memory cells that define
how the programmable elements are configured. The con-
figuration data can be read from memory (e.g., from an exter-
nal PROM) or written into the FPGA by an external device.
The collective states of the individual memory cells then
determine the function of the FPGA.

SUMMARY

In one embodiment, a method is provided for configuration
of a plurality of programmable ICs. A configuration data
sequence is input to a master programmable IC. In response to
control bits in the configuration data sequence, the master
programmable IC transmits the configuration data sequence
to one or more slave programmable ICs. The master program-
mable IC and the one or more slave programmable ICs are
configured in parallel with configuration bits from the con-
figuration data sequence.

In another embodiment, a circuit is provided. The circuit
includes an interposer having a substrate, a plurality of
through-silicon-vias (TSVs), and a routing layer that includes
routing circuitry coupled to the TSVs. The circuit includes a
plurality of programmable ICs mounted on the routing layer
and inter-coupled by the routing circuitry of the interposer.
One of the programmable ICs is a master programmable IC
and others of the programmable ICs are slave programmable
1Cs. The master programmable IC is configured to transmit a
received configuration data sequence to the slave program-
mable ICs in response to control bits in the configuration data
sequence. The master programmable IC and the slave pro-
grammable ICs are configured to program respective
resources in parallel with configuration bits from the configu-
ration data sequence.

In another embodiment, a method is provided for testing a
plurality of programmable integrated circuits (ICs) mounted

10

15

20

25

30

35

40

45

50

55

60

65

2

on and inter-coupled by an interposer. Programmable
resources of each of the programmable ICs are configured to
implement a test circuit specified by a configuration data
sequence. The test circuit includes one or more outputs. At
each of the programmable ICs, the test circuit is operated and
arespective deterministic number sequence is generated from
the one or more outputs of the test circuit. The deterministic
number sequences are output from the plurality of program-
mable ICs. An expected value is determined from the deter-
ministic number sequences. Each of the deterministic number
sequences are compared to the expected value to determine if
the corresponding programmable IC is operating correctly.
Other embodiments will be recognized from consideration
of'the Detailed Description and Claims, which follow.

BRIEF DESCRIPTION OF THE DRAWINGS

Various aspects and advantages of the disclosed embodi-
ments will become apparent upon review of the following
detailed description and upon reference to the drawings in
which:

FIG. 1 shows a cross-sectional side view of a multiple-die
IC having a plurality of interconnected programmable IC
dies;

FIG. 2 shows a flowchart of a process for configuration and
testing of a plurality of programmable IC dies of a multiple-
die IC;

FIG. 3 shows a plurality of programmable IC dies coupled
together in a master-slave arrangement for configuration of
slave cells in parallel;

FIG. 4 shows a block circuit diagram of a multiple-input-
shift-register circuit that may be used to generate a determin-
istic data output from output data values; and

FIG. 5 is a block diagram of an example programmable
logic integrated circuit that may be implemented as a diein a
multiple-die IC.

DETAILED DESCRIPTION OF THE DRAWINGS

Importantly, verifying logic externally by probing the
external pins has become increasingly difficult in certain sce-
narios. For instance, flip-chip and ball grid array (BGA) pack-
aging may not have exposed leads that can be physically
probed using external tools such as an oscilloscope. Using
traditional methods, capturing signal states on devices run-
ning at system speeds in excess of 200 MHz can be challeng-
ing. Furthermore, most circuit boards are small and have
multiple layers of epoxy, with lines buried deep within the
epoxy layers. These lines are inaccessible using an external
tool. Notably, attaching headers to sockets or SoCs to aid in
debugging can have adverse effects on system timing, espe-
cially in the case of a high-speed bus. In addition, attaching
headers can consume valuable printed circuit board (PCB)
real estate.

One embodiment relates to configuration and testing of an
IC that has multiple dies interconnected together. For
instance, a multiple-die IC may be implemented using a plu-
rality of programmable ICs that are interconnected by cir-
cuitry on a substrate or interposer. Following assembly of
such a multiple-die IC, each programmable IC must be tested
to verify its functionality. Such verification involves config-
uring each of the programmable ICs with various configura-
tion data and/or input sequences that test different program-
mable resources under different input scenarios.

Programmable ICs may be implemented using a mono-
lithic architecture, where an entire circuit design is imple-
mented using programmable resources of a single program-

US 9,091,727 B1

3

mable IC. In such an architecture, configuration and/or
testing of a circuit design is performed by configuring the
entire programmable IC with a large configuration data
sequence made for that specific device. The large configura-
tion data sequence is sometimes referred to as a configuration
bitstream. The large configuration data sequence is used to
program the programmable resources of the IC. Multiple-die
ICs have been configured and verified in a similar manner.
One large configuration data sequence is constructed that
includes configuration data for each individual one of the
programmable IC dies. As each portion of the configuration
data sequence is received, a controller determines a program-
mable IC that is to be programmed by the portion and for-
wards the sequence to the determined IC. In this manner, the
programmable ICs are sequentially configured. However,
during testing/verification of a multiple-die IC, each pro-
grammable IC is configured with a similar set of test data. In
this application, the sequential configuration of the multiple
programmable IC is slow. Furthermore, as a multiple-die IC
may contain a large number of programmable ICs and veri-
fication may require a large number of different configura-
tions for each programmable IC, the sequential configuration
method may be infeasible.

In some implementations, the disclosed method and sys-
tem reduce the time required for configuration and testing of
programmable IC dies in a multiple-die architecture by con-
figuring the programmable IC dies (with identical configura-
tion data sequences) in parallel. One of the programmable IC
dies is configured or designated to operate as a master IC and
the other programmable IC dies are configured to operate as
slave ICs. During configuration of test circuits in the pro-
grammable IC dies, the master programmable IC die receives
a configuration data sequence, and in response, uses the con-
figuration data sequence to configure each of the slave pro-
grammable IC dies in parallel. As the configuration data is
received, the master programmable IC die programs its con-
figuration memory and forwards the configuration data to the
slave programmable IC dies. For instance, in one implemen-
tation the master programmable IC die may broadcast con-
figuration data to the slave programmable IC dies over a data
bus. Input test data vectors (if not included in the configura-
tion data sequence) may be similarly received by inputs of the
master IC and forwarded in parallel to inputs of each pro-
grammable IC die. Alternatively, the package circuitry inter-
connecting the master and slave programmable ICs may tem-
porarily connect one or more inputs of master and slave
programmable IC dies together during testing, so that test
vectors may be propagated to the respective inputs.

In some applications, output results generated by each of
the master and slave programmable IC dies may not be easily
output from the multiple-die architecture. This is because the
configuration data sequence may configure each of the pro-
grammable IC dies to use the same terminals as outputs.
However, not all of the programmable IC dies have the same
input/output pads bonded to input/output terminals of the
interposer/package. To address this scenario, the outputs of
each of the programmable IC dies are monitored and con-
verted into a respective deterministic value that may be output
on a serial data line.

FIG. 1 shows a cross-sectional side view of a multiple-die
IC. The multiple-die IC in this example includes a plurality of
programmable IC dies (e.g., 102, 103, and 104) mounted on
and interconnected by interposer 106. Interposer 106 can be
implemented as a die formed of one or more layers of an IC
process technology. Interposer 106 includes one or more wir-
ing layers 116 (e.g., 130 and 132) to interconnect contacts
(e.g., micro bumps 118) of the programmable IC dies and

20

25

40

45

55

4

external contacts (e.g., 114) of the interposer. Interposer 106
may be configured as an entirely passive structure within
which the inter-die wiring (e.g., 130 and 132) is implemented.
Interposer 106 may include one or more active devices that
can be dynamically configured to implement different wiring
patterns in the wiring layer 116. The disclosure is not intended
to be limited to either passive or active interposers.

In one or more implementations, programmable IC dies
102, 103, and 104 are disposed in the same horizontal plane
on interposer 106, as shown in FIG. 1. However, in some
implementations, dies may be oriented in a number of stacked
layers. The programmable IC dies 102, 103, and 104 are
coupled to interposer 106 through a plurality of micro bumps
118. Micro bumps 118 generally are solder balls that electri-
cally couple pads (not shown) of each of dies to pads (not
shown) of interposer 106. For example, during manufacture
of'a multiple-die IC, the bottom side of programmable IC dies
102, 103, and 104 may be micro-bumped. Similarly, the top
side of interposer 106 may be configured with micro-bump
pads. Programmable IC dies 102, 103, and 104 can be aligned
on the top of interposer 106 so that each micro-bump of the
programmable IC dies is aligned with a micro-bump pad on
the interposer. Aligned micro-bump pairs between interposer
106 and dies 102, 103, and 104 can be interconnected to form
a single electrical connection illustrated as micro-bumps 118.

Some micro bumps 118 are connected to solder bumps 114
by wiring layer 116 and silicon vias (TSVs) 112. Each TSV
112 can extend completely through interposer substrate 110
extending from a pad disposed immediately below the top
surface of the substrate through to a pad exposed through the
bottom surface of the substrate. Each TSV 112 can couple a
pad of one of dies 102, 103, and 104, via a micro-bump 118,
for example, to one of the plurality of solder bumps 114.
Solder bumps 114, also referred to as “C4 bumps,” generally
are solder balls that couple pads on the bottom portion of an
interposer to external terminals of the multiple-die IC pack-
age. One or more pads of dies 102, 103, and 104 can be
coupled to external pins of the package of multiple-die IC 100
by coupling the pads to micro bumps 118, to TSVs 112, to
package bumps 114, and to external package pins.

FIG. 2 shows a flowchart of a process for configuration and
testing of a plurality of programmable IC dies of a multiple-
die IC. A configuration data sequence is input to a configu-
ration input of the master programmable IC die at block 202.
The master programmable IC die forwards the configuration
data sequence to each of the slave programmable IC dies in
parallel at block 204. Master and slave programmable IC dies
are configured in parallel with the configuration data at block
206.

As indicated above, output pads of different programmable
IC dies may be configured differently in a particular applica-
tion. For instance, there may not be enough I/O pins on a
package to connect to each I/O pin of the programmable IC
dies. As one example, the routing layer of an interposer may
connect the pad on one programmable IC die to an output pad
of the package and not connect the corresponding pad of
another one of the programmable IC dies. To test such a
structure, a circuit is implemented in each programmable IC
die to monitor the outputs and generate a deterministic data
value (e.g., a hash value) based on the output data values. The
generated deterministic values may be output and compared
to determine if the programmable IC dies are generating
consistent outputs. If one of the programmable IC dies is
generating different output values, due to error, the generated
hash value will be different from the generated hash values
output from the other programmable IC dies. Use of the
deterministic value for comparison reduces the amount of

US 9,091,727 B1

5

data that must be output. The deterministic data generated by
each of'the programmable IC dies may be output using a serial
output interface, such as JTAG.

Referring again to FIG. 2, each programmable IC die
implements a multiple-input-shift-register (MISR) to convert
output data into a deterministic data value. The MISRs for
master and slaves are initialized to the same set of initializa-
tion values at block 208. After initialization, a set of test
vectors are executed by each of the programmable IC dies at
block 210 to test the desired circuits and generate outputs.
Input test vectors may be included in the configuration data
sequence or may be received following configuration of pro-
grammable resources. If input test vectors are not included
with the configuration data sequence, the test vectors are
received by the master programmable IC die and forwarded to
slave programmable IC dies in the same manner as the con-
figuration data sequence. Deterministic data values are gen-
erated from the output data by the MISR circuit in each FPGA
at block 212. In some implementations the generated deter-
ministic values are generated pseudo-randomly based on the
input. As such, differences in the outputs generated by the
logic circuits will cause pseudo-random differences to appear
between the deterministic data values. The deterministic data
values are output and compared at block 214 to determine
whether any of the FPGAs produces inconsistent results in
execution of the test data.

Master and slave programmable IC dies may be designated
using a number of different methods. Referring again to FIG.
1, one or more micro-bumps 118 may be used to specity
aspects of multiple-die IC such as the number of dies included
within multiple-die IC and which die is designated as the
master die and which die (or dies) is designated as the slave
die. For example, during the manufacturing process, one or
more of micro-bumps 118 for each of dies 102, 103, and 104
can be reserved to specify the information noted. The
reserved micro-bumps, e.g., each individual one of the
reserved micro-bumps, can be either coupled to ground or left
floating. When coupled to ground, the reserved micro-bumps
remain at the voltage potential of ground, e.g., a logic low.
When the reserved micro-bumps are left floating, pull-up
circuitry coupled to the reserved micro-bumps 118 can pull
the voltage high, e.g., indicating a logic high. One reserved
micro-bump 118 can be used to indicate whether the pro-
grammable IC die is a master or a slave. A controller or other
circuitry, e.g., a configuration controller, within each die can
determine whether that die is a master or a slave based upon
whether the enumerated and reserved micro-bump 118 of that
die is high or low. In this manner, the designation of one die as
master and each other die as a slave can be implemented
during the manufacturing process through proper coding,
e.g., coupling of the reserved micro-bumps 118 in each
respective die. This process allows identical dies to be
included within multiple-die IC 100 since designation of one
die as master and another die as slave can occur during pack-
aging purely through the encoding described as opposed to
when each die is manufactured. The micro-bump encoding
process means that master dies can be identical to slave dies
when manufactured.

FIG. 3 shows a plurality of programmable IC dies con-
nected together in a master-slave arrangement for parallel
configuration and verification testing. In this example, each
master programmable IC die 302 and slave programmable IC
die (e.g., 312 and 322) includes a configuration port (Cont)
and a number of 1/O ports (A-C). As discussed above, the
master and slave programmable IC dies (e.g., 302, 312, and
322) are configured to receive a configuration data sequence
via a respective Conf port and configure respective program-

5

10

15

20

25

30

35

40

45

50

55

60

6

mable resources to implement respective test circuitry (e.g.,
304, 314, and 324) specified by the configuration data
sequence. The master programmable IC 302 is configured to
use an [/O port B to forward the received configuration data
sequence to the Conf port of each of the slave programmable
IC dies (e.g., 312 and 322). In this manner, the slave program-
mable IC dies may be configured with a configuration data
sequence for testing in parallel. In this example, the configu-
ration of programmable resources of each programmable IC
is controlled by a respective configuration control circuit
(e.g., 332,334, and 336). Each configuration control circuit is
configured to program programmable resources of the pro-
grammable IC using a received configuration data sequence
and forward the data sequence if the programmable IC is
designated to be a master programmable IC. Otherwise, if the
programmable IC is designated to be a slave programmable
1C, the control circuit does not forward the configuration data
sequence. As discussed with reference to FIG. 2, micro-
bumps may be reserved to indicate whether a programmable
IC is a master or a slave based on the voltage status of the
micro-bump. For instance, the micro-bump may be coupled
to ground to indicate the programmable IC is a master or left
floating to indicate that it is a slave.

As discussed above, the common configuration data
sequence configures the 1/O ports (e.g., A-C) of the master
and slave programmable IC dies to operate in a similar man-
ner. However, the actual design to be implemented using the
multiple-die architecture may connect 1/O ports of different
slave circuits differently. For instance, routing circuitry of an
interposer package may connect 1/O port C of slave cell 1 to
an I/0 terminal of the package but connect I/O port C of slave
cell 2 to a path that is not externally accessible. Furthermore,
there may not be enough package terminals to connect each
1/0O terminal of the master and slave programmable ICs to a
respective terminal of the package.

Each of the master and slave programmable IC dies (e.g.,
302, 312, and 322) may include a circuit (e.g., MISRs 306,
316, and 326) that is configured to generate a deterministic
data value based on output of one or more I/O ports (e.g., B
and C) of the programmable IC dies. As discussed with ref-
erence to FIG. 2, the generated deterministic values may be
output and compared to determine if the programmable IC
dies are generating consistent outputs. If one of the program-
mable IC dies is generating different output values, such as
due to error, the generated hash value from the one program-
mable IC die will be different from the hash values generated
by the other programmable IC dies. Use of the deterministic
value for comparison reduces the amount of data that must be
output. In the implementation shown in FIG. 3, deterministic
data values are generated in each programmable IC using
respective MISRs to generate a deterministic pseudo-random
number. However, it is recognized that deterministic data
values may be implemented with a number of other circuits as
well.

The deterministic data values may be output from the mas-
ter and slave programmable IC dies to determine whether any
of the programmable IC dies produce inconsistent results in
response to the input data values. Deterministic data values
may be output from the IC package and compared by an
external analysis circuit to determine whether any of the
master or slave programmable IC dies are producing incon-
sistent output signals. Alternatively, data values may be com-
pared by an analysis circuit (not shown in FIG. 3) imple-
mented within the package. The deterministic data values of
different programmable IC dies may be compared to deter-
mine an expected value. The expected value may be deter-
mined by a majority voter circuit that compares the values of

US 9,091,727 B1

7

the different programmable IC dies to determine a value that
is output by a majority of the programmable IC dies. A pro-
grammable IC die outputting a deterministic value different
from the expected value (i.e., the majority value) is deter-
mined to be operating incorrectly.

The deterministic data generated by each of the program-
mable ICs may be output using a serial output interface, such
as a boundary scan interface. Boundary scan interfaces may
provide embedded test circuits, such as test access ports
(TAPs), at chip level to debug, verify, and test PCB assem-
blies. The institute of electronic engineers (IEEE) joint test
action group (JTAG) has defined a standard, JTAG TAP also
known as IEEE 1149.1, that utilizes boundary-scan for
debugging and verifying PCB assemblies, such as SoCs.
IEEE Standard 1149.1 defines a four pin serial interface that
drives a 16-state controller (state machine) formed in each
compliant IC device. The four pins control transitions of the
state machine and facilitate loading of instructions and data
into the compliant IC device to accomplish pre-defined tasks.
Originally, IEEE Standard 1149.1 was developed to perform
boundary scan test procedures wherein the interconnections
and IC device placement on printed circuit boards (PCBs) are
tested through the connection pins of the PCBs (i.e., without
the need for a mechanical probe). Since its establishment,
some implementations of boundary scan have been extended
to include additional test procedures such as device functional
tests, self-tests, and diagnostics.

In the example implementation shown in FIG. 3, a JTAG
boundary scan chain (e.g., 308, 318, and 328) is included in
each master and slave programmable IC. Each output of a
MISR circuit is connected to a respective output register of
the JTAG circuit. The test-data-in (TDI) and test-data-out
(TDO) terminals of the JTAG boundary scan chain (e.g., 308,
318, and 328) are connected together in series to form a
boundary scan chain. The JTAG boundary scan chains seri-
ally output the deterministic data values from the IC package.
In an alternative implementation (not depicted), a single
JTAG boundary scan chain is disposed within the IC package
but external to the master and slave circuits. In one such
implementation, the output pins of each master/slave pro-
grammable IC are routed to respective input taps of the JTAG
boundary scan interface.

FIG. 4 shows a block circuit diagram of a MISR circuit that
may be used to generate deterministic data values from output
data values of a programmable IC. The MISR is a linear
feedback shift register whose register values are altered in a
unique way each cycle by its inputs (IN, through IN,) and a
feedback value. In this example, an N stage MISR is imple-
mented. In each stage, inputs (e.g., IN; through IN,, and the
feedback signal) are enabled or disabled with a respective
AND gate (e.g., 406, 416, and 426) and MUX gate (e.g., 402,
412, and 422). Enabled signals are XOR'd by a respective
XOR gate (e.g., 404, 414, and 424) and the resulting value is
stored in a respective flip-flop (e.g., 408, 418, and 428). In this
example, the output data value from the flip-flop of stage N-1
is used as the feedback data value to each of the stages.
However, other feedback implementations are possible as
well. For instance, in one alternative implementation output
data values from stage N may be used as feedback for even
numbered stages (e.g., 2,4, 6 ...) and output from stage N-1
may be used for feedback to odd numbered stages (e.g. 1, 3,
5..0).

If the MISR is left running for a substantial number of
cycles, its output will be uniquely determined by the data
values input during this period. If there is a single bit wrong in
any cycle, the output signature of the MISR will be com-
pletely different due to the pseudo-random nature of the

25

40

45

55

8

deterministic values. By using the MISR to observe the out-
puts of the programmable IC, direct at-speed observation of
the outputs on the tester is not necessary for verification. This
reduces speed requirements of automatic test equipment and
decreases testing runtime requirements. In some implemen-
tations, phase locked loops (PLL) of a programmable IC may
be clocked at a higher rate than external test circuits used to
compare data values.

FIG. 5 is a block diagram of an example programmable
logic integrated circuit that may be implemented as a diein a
multiple-die IC. A multiple-die IC, as previously described,
may be implemented using a plurality of programmable ICs,
such as a field programmable gate array (FPGA), intercon-
nected on an interposer.

FPGAs can include several different types of program-
mable logic blocks in the array. For example, FIG. 5 illus-
trates an FPGA architecture (500) that includes a large num-
ber of different programmable tiles including multi-gigabit
transceivers (MGTs 501), configurable logic blocks (CLBs
502), random access memory blocks (BRAMs 503), input/
output blocks (I0Bs 504), configuration and clocking logic
(CONFIG/CLOCKS 505), digital signal processing blocks
(DSPs 506), specialized input/output blocks (/O 507), for
example, e.g., clock ports, and other programmable logic 508
such as digital clock managers, analog-to-digital converters,
system monitoring logic, and so forth. Some FPGAs also
include dedicated processor blocks (PROC 510) and internal
and external reconfiguration ports (not shown).

In some FPGAs, each programmable tile includes a pro-
grammable interconnect element (INT 511) having standard-
ized connections to and from a corresponding interconnect
element in each adjacent tile. Therefore, the programmable
interconnect elements taken together implement the pro-
grammable interconnect structure for the illustrated FPGA.
The programmable interconnect element INT 511 also
includes the connections to and from the programmable logic
element within the same tile, as shown by the examples
included at the top of FIG. 5.

For example, a CLLB 502 can include a configurable logic
element CLE 512 that can be programmed to implement user
logic plus a single programmable interconnect element INT
511. ABRAM 503 can include a BRAM logic element (BRL
513) in addition to one or more programmable interconnect
elements. Typically, the number of interconnect elements
included in a tile depends on the height of the tile. In the
pictured FPGA, a BRAM tile has the same height as five
CLBs, but other numbers (e.g., four) can also be used. A DSP
tile 506 can include a DSP logic element (DSPL 514) in
addition to an appropriate number of programmable intercon-
nect elements. An 10B 504 can include, for example, two
instances of an input/output logic element (IOL 515) in addi-
tion to one instance of the programmable interconnect ele-
ment INT 511. As will be clear to those of skill in the art, the
actual I/O pads connected, for example, to the /O logic
element 515 are manufactured using metal layered above the
various illustrated logic blocks, and typically are not confined
to the area of the input/output logic element 515.

In the pictured FPGA, a columnar area near the center of
the die (shown shaded in FIG. 5) is used for configuration,
clock, and other control logic. Horizontal areas 509 extending
from this column are used to distribute the clocks and con-
figuration signals across the breadth of the FPGA.

Some FPGAs utilizing the architecture illustrated in FIG. 5
include additional logic blocks that disrupt the regular colum-
nar structure making up a large part of the FPGA. The addi-
tional logic blocks can be programmable blocks and/or dedi-

US 9,091,727 B1

9

cated logic. For example, the processor block PROC 510
shown in FIG. 5 spans several columns of CLBs and BRAM:s.

Note that FIG. 5 is intended to illustrate only an exemplary
FPGA architecture. The numbers of logic blocks in a column,
the relative widths of the columns, the number and order of
columns, the types of logic blocks included in the columns,
the relative sizes of the logic blocks, and the interconnect/
logic implementations included at the top of FIG. 5 are purely
exemplary. For example, in an actual FPGA more than one
adjacent column of CLBs is typically included wherever the
CLBs appear, to facilitate the efficient implementation of user
logic.

Although some of the embodiments and examples are
described with reference to FPGAs, those skilled in the art
will appreciate that the embodiments may be applied to mul-
tiple-die ICs using other core architectures as well. FPGAs
are merely used herein as exemplary ICs to which the
embodiments can be applied. However, the embodiments are
not so limited, and the teachings can be applied to other
programmable ICs. Other aspects and embodiments will be
apparent to those skilled in the art from consideration of the
specification. The embodiments may be implemented as one
or more processors configured to execute software, as an
application specific integrated circuit (ASIC), or as alogic on
a programmable logic device. It is intended that the specifi-
cation and illustrated embodiments be considered as
examples only, with a true scope of the disclosure being
indicated by the following claims.

What is claimed is:

1. A method of operating a circuit, comprising:

inputting a configuration data sequence to a first program-

mable integrated circuit (IC);

determining by a configuration control circuit in the first

programmable IC whether the first programmable IC is
a master programmable IC or a slave programmable IC
based on a voltage status of a micro-bump of the first
programmable IC; and

in response to the configuration control circuit in the first

programmable IC determining the first programmable

IC is a master programmable IC and control bits in the

configuration data sequence:

transmitting the configuration data sequence from the
master programmable IC to one or more slave pro-
grammable ICs; and

configuring the master programmable IC and the one or
more slave programmable ICs in parallel with con-
figuration bits from the configuration data sequence.

2. The method of claim 1, further comprising:

at each programmable IC of the master and slave program-

mable ICs, in response to control bits in the configura-
tion data sequence, configuring programmable
resources of the programmable IC to implement a logic
circuit having one or more outputs; and

generating a deterministic number sequence from the one

or more outputs of the logic circuit.

3. The method of claim 2, further comprising, at each
programmable IC of the master and slave programmable ICs,
in response to the control bits in the configuration data
sequence, further configuring programmable resources of the
programmable IC to implement a multiple-input shift register
(MISR) circuit having a respective input tap for each of the
one or more outputs of the logic circuit, the MISR circuit
configured to generate the deterministic number sequence
from the one or more outputs.

4. The method of claim 3, further comprising initializing
the respective MISR circuits to an equal value.

20

35

40

45

55

65

10

5. The method of claim 3, generating respective determin-
istic number sequences using the respective MISR circuits in
response to the one or more outputs of the respective logic
circuits for a plurality of data cycles, in which data values are
output from the one or more outputs of the respective logic
circuits in each of the plurality of data cycles.
6. The method of claim 5, further comprising, after the
plurality of data cycles:
outputting a current value of the deterministic number
sequence from each of the respective programmable
ICs; and

comparing each of the current values to an expected value
to determine if the corresponding programmable IC is
operating correctly.

7. The method of claim 6, wherein the outputting of the
current value of the deterministic number sequence includes
outputting the current value of the deterministic number
sequence using a serial input/output interface.

8. The method of claim 7, wherein the serial input/output
interface is a JTAG boundary scan interface.

9. The method of claim 6, further comprising determining
the expected value by comparing the current values of the
deterministic number sequences to determine a value of a
majority of the current values of the deterministic number
sequences.

10. A circuit, comprising:

an interposer that includes:

a substrate;

a plurality of through-silicon-vias (TSVs) extending
through the substrate; and

a routing layer that includes routing circuitry coupled to
the plurality of TSVs; and

a plurality of programmable integrated circuits (ICs)

mounted on the routing layer and inter-coupled by the
routing circuitry of the interposer; and

wherein each of the programmable ICs includes a configu-

ration control circuit coupled to a reserved micro-bump
of the programmable IC and a voltage status of the
reserved micro-bump indicates whether the program-
mable IC is a master programmable IC or a slave pro-
grammable IC, and the configuration control circuit is
configured and arranged, responsive to the voltage status
of the reserved micro-bump indicating the program-
mable IC is a master programmable IC, to transmit a
received configuration data sequence to each slave pro-
grammable IC in response to control bits in the configu-
ration data sequence, and the master programmable IC
and each slave programmable IC are configured to pro-
gram respective resources in parallel with configuration
bits from the configuration data sequence.

11. The circuit of claim 10, wherein each of the master and
slave programmable ICs includes a circuit configured to gen-
erate a deterministic number from one or more outputs of a
logic circuit implemented in the respective resources in
response to the configuration data sequence.

12. The circuit of claim 11, wherein the circuit configured
to generate the deterministic number is a multiple-input shift
register (MISR) circuit having a respective input tap for each
of the one or more outputs of the logic circuit.

13. The circuit of claim 12, wherein the MISR circuit of
each of the master and slave programmable ICs are initial-
ized, in response to the configuration data sequence, to values
that are the same.

14. The circuit of claim 12, further comprising in each of
the master and slave programmable ICs, a respective bound-
ary scan interface circuit having one or more inputs connected

US 9,091,727 B1

11

to one or more outputs of the MISR circuit and configured to
output the deterministic numbers generated by the MISR
circuit on a serial data line.
15. The circuit of claim 12, wherein the boundary scan
interface circuit is a JTAG interface.
16. A method of testing a plurality of programmable inte-
grated circuits (ICs) mounted on and inter-coupled by an
interposer, comprising:
inputting a configuration data sequence to a first program-
mable IC of the plurality of programmable ICs;

determining by a configuration control circuit in the first
programmable IC whether the first programmable IC is
a master programmable IC or a slave programmable IC
based on a voltage status of a micro-bump of the first
programmable IC;

in response to the configuration control circuit in the first

programmable IC determining the first programmable

IC is a master programmable IC and control bits in the

configuration data sequence:

transmitting the configuration data sequence from the
master programmable IC to one or more slave pro-
grammable ICs of the plurality of programmable ICs;
and

configuring programmable resources of the master pro-
grammable IC and the one or more slave program-
mable ICs in parallel to implement a test circuit speci-
fied by the configuration data sequence, the test circuit
having one or more outputs;

10

15

20

25

12

at each of the programmable ICs, operating the respective
test circuit and generating a deterministic number
sequence from the one or more outputs of the test circuit;

outputting the deterministic number sequences from the
plurality of programmable ICs;

determining an expected value from the deterministic num-

ber sequences; and

comparing each of the deterministic number sequences to

the expected value to determine if the corresponding
programmable IC is operating correctly.

17. The method of claim 16, further comprising, at each of
the plurality of programmable ICs in response to control bits
in the configuration data sequence, further configuring the
programmable resources of each of the programmable ICs to
implement a multiple-input shift register (MISR) circuit hav-
ing a respective input tap for each of the one or more outputs
of'the test circuit, the MISR circuit configured to generate the
deterministic number sequence from the one or more outputs.

18. The method of claim 17, further comprising initializing
the respective MISR circuits to an equal value.

19. The method of claim 16, wherein:

the outputting of the deterministic number sequences from

the plurality of programmable ICs includes, at each of
the plurality of programmable ICs, outputting the
respective deterministic number sequence using a serial
input/output interface.

#* #* #* #* #*

